Oscillatory synthesis of glucose 1,6-bisphosphate and frequency modulation of glycolytic oscillations in skeletal muscle extracts.
نویسندگان
چکیده
Oscillatory behavior of glycolysis in cell-free extracts of rat skeletal muscle involves bursts of phosphofructokinase activity, due to autocatalytic activation by fructose-1,6-P2. Glucose-1,6-P2 similarly might activate phosphofructokinase in an autocatalytic manner, because it is produced in a side reaction of phosphofructokinase and in a side reaction of phosphoglucomutase using fructose-1,6-P2. When muscle extracts were provided with 1 mM ATP and 10 mM glucose, glucose-1,6-P2 accumulated in a stepwise, but monotonic, manner to 0.7 microM in 1 h. The stepwise increases occurred during the phases when fructose-1,6-P2 was available, consistent with glucose-1,6-P2 synthesis in the phosphoglucomutase side reaction. Addition of 5-20 microM glucose-1,6-P2 increased the frequency of the oscillations in a dose-dependent manner and progressively shortened the time interval before the first burst of phosphofructokinase activity. Addition of 30 microM glucose-1,6-P2 blocked the oscillations. The peak values of the [ATP]/[ADP] ratio were then eliminated, and the average [ATP]/[ADP] ratio was reduced by half. In the presence of higher, near physiological concentrations of ATP and citrate (which reduce the activation of phosphofructokinase by glucose-1,6-P2), high physiological concentrations of glucose-1,6-P2 (50-100 microM) increased the frequency of the oscillations and did not block them. We conclude that autocatalytic activation of phosphofructokinase by fructose-1,6-P2, but not by glucose-1,6-P2, is the mechanism generating the oscillations in muscle extracts. Glucose-1,6-P2 may nevertheless play a role in facilitating the initiation of the oscillations and in modulating their frequency.
منابع مشابه
Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts.
Oscillatory behavior of glycolysis in cell-free extracts of rat skeletal muscle involves bursts of phosphofructokinase activity due to autocatalytic activation by fructose-1,6-P2. Fructose-2,6-P2 is an even more potent activator of phosphofructokinase and is competitive with fructose-1,6-P2 in binding and kinetic studies. The possible role and effects of fructose-2,6-P2 on the oscillating syste...
متن کاملTransient increase in glucose 1,6-bisphosphate in human skeletal muscle during isometric contraction.
Changes in glucose 1,6-bisphosphate and regulators of glucose-1,6-bisphosphate synthase and phosphatase during isometric contraction have been determined. Biopsies were obtained from the quadriceps femoris muscle before and after 20 s of contraction and at fatigue. Glucose 1,6-bisphosphate increased by 35% after 20 s of contraction (P less than 0.001) with no further change at fatigue (P greate...
متن کاملThe control of glucose 1,6-bisphosphate by developmental state and hormonal stimulation in cultured muscle tissue.
1. The concentration of glucose 1,6-bisphosphate, a potent regulator of muscle glucose metabolism, was examined in embryonic muscle cells in culture. 2. The concentration in fused myotubes was twice that in unfused myoblasts. 3. The effect of various hormones and agonists on the glucose 1,6-bisphosphate concentration in both pre- and post-fusion muscle cells was examined. In pre-fusion cells no...
متن کاملFructose 2,6-bisphosphate in rat skeletal muscle during contraction.
Fructose 2,6-bisphosphate and several glycolytic intermediates were measured in two rat muscles, extensor digitorum longus and gastrocnemius, which were electrically stimulated in situ. Both the duration and the frequency of stimulation were varied to obtain different rates of glycolysis. There was no relationship between fructose 2,6-bisphosphate content and the increase in tissue lactate in c...
متن کاملAppendix: Calculation of the rate of fructose 6-phosphate/fructose 1,6-bisphosphate cycling in a tissue with active glycogenolysis and/or glycogen synthesis.
where T is the glycolytic rate, SI = (3H/'4C) ratio of hexose monophosphates/(3H/14C) ratio of glucose and S2= (3H/14C) ratio of fructose 1,6bisphosphate/(3H/14C) ratio of glucose. This formula is derived for a system such as that described in Scheme 1. However, in the main paper (Challiss et al., 1984), it is clear that glycogenolysis and glycogen synthesis may occur under the various conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 35 شماره
صفحات -
تاریخ انتشار 1990